[特邀报告]单细胞多组学数据整合的人工智能方法

单细胞多组学数据整合的人工智能方法
编号:168 访问权限:仅限参会人 更新:2022-07-12 15:49:09 浏览:960次 特邀报告

报告开始:2022年07月23日 14:00 (Asia/Shanghai)

报告时间:25min

所在会议:[S1] 分会场1 » [S1-1] 生物医学大数据与人工智能

暂无文件

摘要
Computational tools for integrative analyses of diverse single-cell experiments are facing formidable new challenges including dramatic increases in data scale, sample heterogeneity, and the need to informatively cross-reference new data with foundational datasets. Here, we present SCALEX, a deep-learning method that integrates single-cell data by projecting cells into a batch-invariant, common cell-embedding space in a truly online manner (i.e., without retraining the model). SCALEX substantially outperforms other state-of-the-art integration methods on benchmark single-cell datasets of diverse modalities, (e.g., scRNA-seq, scATAC-seq, spatial transcriptomics), especially for datasets with partial overlaps, accurately aligning similar cell populations while retaining true biological differences. We showcase SCALEX's advantages by constructing continuously expandable single-cell atlases for human, mouse, and COVID-19 patients, each assembled from diverse data sources and growing with every new data. The online data integration capacity and superior performance makes SCALEX particularly appropriate for large-scale single-cell applications to build-upon previously hard-won scientific insights.
 
关键字
报告人
张强锋
清华大学

张强锋博士,清华大学生命科学学院副教授,博士生导师,清华-北大联合中心研究员,清华大学生物信息学教育部重点实验室PI。2000年获中国科学技术大学学士学位,2006年获中国科学技术大学计算机博士学位,2011年获哥伦比亚大学生物物理博士学位,2011-2015年分别于哥伦比亚大学和斯坦福大学从事科研工作。实验室目前主要利用干湿结合的方法,从事RNA结构组学,单细胞组学,冷冻电镜等研究。作为课题负责人及骨干参与了两项国家重点研发计划。主持国家基金委杰出青年、重点等项目共5项。在Cell,Cell Research,Cell Host & Microbe,Nature Struct & Mol Biol 等杂志以通讯作者发表SCI论文超过20篇。现担任Science Bulletin等杂志的编委。
 

发表评论
验证码 看不清楚,更换一张
全部评论