[特邀报告]Intelligent spatial transcriptomics: paving the way for deciphering tissue architecture

Intelligent spatial transcriptomics: paving the way for deciphering tissue architecture
编号:170 访问权限:仅限参会人 更新:2022-07-13 09:18:59 浏览:659次 特邀报告

报告开始:2022年07月23日 15:25 (Asia/Shanghai)

报告时间:20min

所在会议:[S1] 分会场1 » [S1-1] 生物医学大数据与人工智能

暂无文件

摘要
Technological advances in spatial transcriptomics are critical for a better understanding of the structure and function of tissues in biological research. Recently, the combination of intelligent/statistical algorithms and spatial transcriptomics are emerging to pave the way for deciphering tissue architecture. In this talk, I will introduce our efforts to advance intelligent spatial transcriptomics. We first develop a graph attention auto-encoder framework STAGATE to accurately identify spatial domains by learning low-dimensional latent embeddings via integrating spatial information and gene expression profiles. We validate STAGATE on diverse spatial transcriptomics datasets generated by different platforms with different spatial resolutions. STAGATE could substantially improve the identification accuracy of spatial domains, and denoise the data while preserving spatial expression patterns. Importantly, STAGATE could be extended to multiple consecutive sections to reduce batch effects between sections and extracting three-dimensional (3D) expression domains from the reconstructed 3D tissue effectively. Based on this, we further 1) demonstrate the effectiveness of the graph attention auto-encoder for spatial clustering of spatial metabolomics, 2) develop STAMarker for identifying spatial domain-specific variable genes and 3) design STAligner for integrating spatial transcriptomics of multiple slices from diverse biological scenarios.
 
关键字
报告人
张世华
中国科学院数学与系统科学研究院

张世华,中国科学院数学与系统科学研究院研究员、中国科学院随机复杂结构与数据科学重点实验室副主任、中国科学院大学岗位教授。主要从事生物信息计算、机器智能与优化交叉研究,主要成果发表在Cell、Nature Communications、Advanced Science、Cell Reports、National Science Review、Science Bulletin、Nucleic Acids Research、IEEE TPAMI、IEEE TKDE、IEEE TNNLS等杂志。曾荣获全国百篇优秀博士论文奖(2010)、中国青年科技奖(2013)、中国科学院卢嘉锡青年人才奖(2013)、国家自然科学基金优秀青年基金(2014)、国家万人计划青年拔尖人才(2018)等。成果入选2021年度中国生物信息学十大进展、2019年度中国生物信息学十大算法和工具。现任PLOS Computational Biology和BMC Genomics等杂志编委。
 

发表评论
验证码 看不清楚,更换一张
全部评论