[口头报告]A deep learning framework for estimating fine-scale germline mutation rates

A deep learning framework for estimating fine-scale germline mutation rates
编号:42 稿件编号:6 访问权限:私有 更新:2022-07-22 16:51:24 浏览:577次 口头报告

报告开始:2022年07月23日 17:30 (Asia/Shanghai)

报告时间:15min

所在会议:[S4] 分会场4 » [S4-1] 群体遗传学与微生物组学

演示文件

提示:该报告下的文件权限为私有,您尚未登录,暂时无法查看。

摘要
Germline mutation rates are essential for genetic and evolutionary analyses. Yet, estimating accurate fine-scale mutation rates across the genome is a great challenge, due to relatively few observed mutations and intricate relationships between predictors and mutation rates. Here we present MuRaL (Mutation Rate Learner), a deep learning-based framework to predict fine-scale mutation rates using only genomic sequences as input. Harnessing human germline variants for comprehensive assessment, we show that MuRaL achieves better predictive performance than current state-of-the-art methods. Moreover, MuRaL can build models with relatively few training mutations and a moderate number of sequenced individuals. It can leverage transfer learning to build models with further less training data and time. We apply MuRaL to produce genome-wide mutation rate profiles for four species - Homo sapiens, Macaca mulatta, Arabidopsis thaliana and Drosophila melanogaster, demonstrating its high applicability. The generated mutation rate profiles and open-source software can greatly facilitate related research.
 
关键字
mutation rate,deep learning,genomics,bioinformatics,computational biology
报告人
李彩
教授 中山大学生命科学学院

中山大学生命科学学院教授,2020年入选国家级人才计划青年项目。一直从事基因组学和计算生物学相关研究,通过整合大规模组学数据揭示基因组的功能和演化,目前的研究重点为基因组突变的分布及发生规律。代表性工作发表于Science、Nature Communications、Genome Research 等知名期刊。

稿件作者
李彩 中山大学生命科学学院
发表评论
验证码 看不清楚,更换一张
全部评论